Abstract
Fast time-resolved infrared spectroscopic measurements have allowed precise determination of the rate of C-H activation of alkanes by Cp'Rh(CO) {Cp' = η(5)-C(5)H(5) or η(5)-C(5)Me(5); alkane = cyclopentane, cyclohexane and neopentane (Cp only)} in solution at room temperature and allowed the determination of how the change in rate of oxidative cleavage varies between complexes and alkanes. Density functional theory calculations on these complexes, transition states, and intermediates provide insight into the mechanism and barriers observed in the experimental results. Unlike our previous study of the linear alkanes, where activation occurred at the primary C-H bonds with a rate governed by a balance between these activations and hopping along the chain, the rate of C-H activation in cyclic alkanes is controlled mainly by the strength of the alkane binding. Although the reaction of CpRh(CO)(neopentane) to form CpRh(CO)(neopentyl)H clearly occurs at a primary C-H bond, the rate is much slower than the corresponding reactions with cyclic alkanes because of steric factors with this bulky alkane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.