Abstract

In the present work, the hydrotalcite-like compound [Mg6Al2(OH)[Formula: see text]]CO[Formula: see text] [Formula: see text]H2O (shorted as MgAl–CO[Formula: see text] is synthesized and the adsorption of phosphorous anions, their adsorption performance on the surface of hydrotalcites, and its mechanism are analyzed. To theoretically clarify the adsorption mechanism and adsorption structures, we perform quantum chemistry calculations of reactants, locally stable states, transition states, and products among phosphorous anion, water, and hydrotalcite in a variety of pH ranges. The experimental result shows that the efficiency of phosphate removal does not depend on pH of the solution, with which the numerical results are consistent. In particular, we identify the factors of influencing the adsorption ratio in different pH ranges from the quantum chemistry calculations: the stability of locally stable states, and the energies and locations of potential barriers along the reaction pathway relative to those of the locally stable states. The results suggest that hydrotalcites synthesized in this work are suitable as sorbent materials for the adsorption and removal of phosphorous anions from aqueous solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.