Abstract

Simulation experiments were conducted using sediments collected from the Taihu Lake to determine the combined effects of submerged macrophytes Ceratophyllum demersum and phosphate-solubilizing bacteria (PSB) strain XMT-5 (Rhizobium sp.) on phosphorus (P) concentrations in overlying waters and sediments. After 30days of experimental incubation, the total phosphorus (TP) and dissolved total phosphorus (DTP) concentrations of the overlying water subjected to AMB and AHMB treatments (both with the combined effects of PSB cells and submerged macrophytes) were generally lower than those of the AM (with individual effects of inoculated C. demersum) and AB (with individual effects of a smaller amount of inoculated PSB cells) control treatments but higher than that of the A (with no effects of inoculated PSB cells or C. demersum) and AHB (with individual effects of a larger amount of inoculated PSB) control treatments. The TP contents of the sediment in the AMB and AHMB treatments were significantly lower than those of the other control treatments. The TP contents of the C. demersum cocultured with the PSB strain XMT-5 cells in the AMB and AHMB treatments were all significantly higher than that of the AM treatment, indicating the enhancement of P uptake by submerged plants inoculated with PSB. The bacterial diversity structures of the rhizosphere sediment subjected to different treatments were also analyzed by the high-throughput sequencing method. According to the ACE and Chao 1 indices, the bacterial diversity in the AMB and AHMB treatments were the highest. Although many sources contributed to the decrease in the nutrient loads of the lake sediment, harvesting macrophytes inoculated with PSB cells prior to their senescence might constitute a significant in-lake measure for reducing internal P load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.