Abstract

This study explores the development of predictive models for carbon dioxide (CO2) solubility in ionic liquids based on a compiled dataset of 10,116 experimentally measured data points involving four input variables: pressure (P), temperature (T), cation type, and anion type. The deep-learning (DL) predictive models evaluated are standalone and hybrid versions of convolutional neural network (CNN) and long short-term memory (LSTM) algorithms with cuckoo optimization algorithm (COA) and gradient-based optimization (GBO). The laboratory-measured data was separated into training and test categories, and each category was normalized separately to improve the performance of the deep learning algorithms. The Mahalanobis distance-based quantile method was utilized to identify any outliers in the training data. Once identified, the outlier data points were eliminated from the training dataset. The control parameters of the deep learning algorithms were optimized using COA to enhance their efficiency, and the algorithms were hybridized with optimization algorithms to further improve their performance. The resulting models were analyzed to assess their accuracy, degree of overfitting, and the importance of input features. The study found that using 80% of the data for training and 20% for testing results in more accurate and generalizable models. Using the outlier detection method on the training data led to 307 data points being eliminated as outliers. Developing CO2-solubility predictive model showed that, the CNNCOA model had the lowest RMSE and highest R2 among the developed models, indicating high generalizability for data unseen by the trained model. The analysis revealed that using optimization algorithms increased the CO2-solubility prediction performance of DL algorithms and reduced overfitting. T and cation type were the most and least important input features, respectively. Simultaneous changes in cation and anion type on CO2-solubility predictions displayed no systematic pattern. For increases in T, CO2 solubility typically decreased, whereas for increases in P CO2 solubility always increased but at variable rates. The results of this study can be used to develop accurate and generalizable CO2-solubility predictive models for various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.