Abstract
Measurement of the maximum blood flow velocity is the primary means for determining the degree of carotid stenosis using ultrasound. The current standard for estimating the maximum velocity is pulsed-wave Doppler with manual angle correction, which is prone to error and interobserver variability. In addition, spectral broadening in the velocity spectra leads to overestimation of maximal velocities. In this paper, we propose to combine two velocity estimation methods to reduce the bias and variability in maximum velocity measurements. First, the direction of the blood flow is estimated using an aliasing-resistant least squares vector Doppler technique. Then, tracking Doppler is performed on the same data, using the direction of the vector Doppler estimate as the tracking direction. Simulations show that the method can estimate a maximum velocity of 2 m/s with accuracy 5% for beam-to-flow angles between 20° and 75°, and that the primary source of error is inaccuracy in the flow direction estimate from vector Doppler. Simulations of complex flow in a carotid bifurcation demonstrated that the combined technique provided spectral velocity profiles corresponding well with the true maximum velocity trace, and that the bias originating from the directional estimate was within 5% for all spatial points. A healthy volunteer and a volunteer with carotid artery stenosis were imaged, showing in vivo feasibility of the method, for high velocities and with beam-to-flow angles varying throughout the cardiac cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.