Abstract
We study a combinatorial market design problem, where a collection of indivisible objects is to be priced and sold to potential buyers subject to equilibrium constraints. The classic solution concept for such problems is Walrasian equilibrium (WE), which provides a simple and transparent pricing structure that achieves optimal social welfare. The main weakness of the WE notion is that it exists only in very restrictive cases. To overcome this limitation, we introduce the notion of a combinatorial Walrasian equilibium (CWE), a natural relaxation of WE. The difference between a CWE and a (noncombinatorial) WE is that the seller can package the items into indivisible bundles prior to sale, and the market does not necessarily clear. We show that every valuation profile admits a CWE that obtains at least half the optimal (unconstrained) social welfare. Moreover, we devise a polynomial time algorithm that, given an arbitrary allocation, computes a CWE that achieves at least half its welfare. Thus, the economic ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.