Abstract

Visible near infrared (Vis/NIR) spectroscopy has become a popular technique for non-invasive quality assessment of intact fruits. The objective of this research was to assess soluble solids content (SSC) of Gannan navel oranges by Vis/NIR spectroscopy and variable selection methods. The semi-transmission spectra of Gannan navel oranges were collected by a QualitySpec spectrometer in the wavelength range of 350~1000 nm. Different spectral pretreatment methods were used to remove spectra noise. After that, several variable selection methods such as successive projections algorithm (SPA), uninformative variable elimination (UVE), and successive projections algorithm combined with uninformative variable elimination (UVE-SPA) were used to find sensitive wavelengths, partial least squares (PLS) and multiple linear regression (MLR) were used to develop calibration models for SSC using sensitive wavelengths. The results indicate that standard normal variate is the best pretreatment method for semi-transmission spectra of Gannan navel oranges, the correlation coefficient (r) and root mean square error (RMSE) of PLS in prediction set are 0.922 and 0.381%, respectively. PLS combined with UVE obtains the comparative results to full-spectrum PLS, the r and RMSE in prediction set are 0.917 and 0.392%, while the number of variables used in the calibration model is reduced from 351 to 134.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.