Abstract

Eddy-current testing (ECT) is a widely used nondestructive evaluation technique. The numerical simulation of ECT methods involves high complexity and computational load. However, one needs reliable solutions (within a reasonable CPU time) for these problems to be able to solve the related inverse problem. One possible approach is to build a configuration-specific database, consisting of well-chosen samples (corresponding input data – output signal pairs). Once the database has been constructed, the sought information can be retrieved practically in no time. However, the optimal choice of samples raises complex optimization problems. This paper presents a sampling method which aims to achieve databases being optimal in a certain sense. The goal of our approach is to spread out the output samples in the whole conceivable output domain. The method is formalized as a maximin problem which is solved step-by-step using the kriging prediction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.