Abstract

A recent paper of our research group has proposed a simplified “water balance” model which predicts actual evapotranspiration (ETA) based on ground and remotely sensed data. The model combines estimates of potential evapotranspiration (ET0) and of fractional vegetation cover derived from NDVI in order to separately simulate transpirative and evaporative processes. The new method, named NDVI-Cws, was validated against latent heat measurements taken by the eddy covariance technique over various vegetation types in Central Italy. The current paper extends this validation to three other test sites in Tuscany for which reference data are obtained from different sources. In the first two sites (non-irrigated winter wheat and irrigated maize fields) seasonal reference ETA data series are obtained by the WinEtro model. In situ transpiration measurements are instead used as reference data for a deciduous oak forest stand. The ETA and transpiration estimates of the NDVI-Cws method are very similar to the reference data in terms of both annual totals and seasonal evolutions. Examples are finally provided of the model application for operationally monitoring ETA in Tuscany.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.