Abstract

The dissolution mechanism of S-phase particles in 2024-T351 aluminum alloy at open-circuit potential in chloride-containing sulfate solutions was investigated using atomic force microscopy (AFM), scanning Kelvin probe force microscopy (SKPFM), and secondary ion mass spectroscopy (SIMS). The combination of the three techniques allowed the correlation between SKPFM measurements and the corrosion behavior of AA2024 to be confirmed, leading to a better understanding of the electrochemical behavior of S-phase particles. A three-step mechanism for the dissolution and accompanying processes occurring near particles was proposed: preferential aluminum and magnesium dissolution, galvanic coupling between the copper-enriched particles and the surrounding matrix, leading to an increased passivity of the matrix around the particles, and copper deposition around the corroded particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.