Abstract

Recent studies have demonstrated that inhibition of CD26 potentiates stromal cell-derived factor-1α (SDF-1α), promotes tissue regeneration, and suppresses the rejection of organ transplants. This study investigated whether the combination of a CD26 inhibitor (CD26i) with granulocyte colony-stimulating factor (G-CSF) and short-term immunosuppressants modulates vascularized composite tissue allotransplant survival in a rodent orthotopic hindlimb allotransplant model. The hindlimb allotransplantation from Brown-Norway to Lewis rats was divided into 4 groups. Group 1 (controls) did not receive any treatment. Group 2 was treated with short-term antilymphocyte serum (ALS) and cyclosporine-A (CsA). Group 3 was administrated CD26i and G-CSF. Group 4 received a combination of CD26i/G-CSF/ALS/CsA. Each subgroup comprised 10 rats. Peripheral blood and sampling of transplanted tissues were collected for immunological and histological analysis. The results revealed that allotransplant survival was found to be significantly prolonged in group 4 with CD26i/G-CSF/ALS/CsA treatment compared with those in the other groups. The interleukin-10 and transforming growth factor-βl levels, the percentage of CD4+/CD25+/FoxP3+ T cells, as well as the levels of SDF-1α expressions were significantly increased in group 4 compared with those in the other groups. Group 4 revealed a statistical increase in the percentage of donor cells (RT1n) expression in the recipient peripheral blood, and the mixed lymphocyte reaction showed hyporesponsiveness of the T cells to donor alloantigens. The combination of CD26i/G-CSF and short-term immunosuppressants prolongs allotransplant survival by inducing immunoregulatory effects and enhancing the percentage of SDF-1α expression. This immunomodulatory approach has great potential as a strategy to increase vascularized composite allotransplantation survival.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.