Abstract
To investigate the effect of ComBat harmonization methods on the robustness of cardiac MRI-derived radiomic features to variations in imaging parameters. This Health Insurance Portability and Accountability Act-compliant retrospective study used a publicly available data set of 11 healthy controls (mean age, 33 years ± 16 [SD]; six men) and five patients (mean age, 52 years ± 16; four men). A single midventricular short-axis section was acquired with 3-T MRI using cine balanced steady-state free precision, T1-weighted, T2-weighted, T1 mapping, and T2 mapping imaging sequences. Each sequence was acquired using baseline parameters and after variations in flip angle, spatial resolution, section thickness, and parallel imaging. Image registration was performed for all sequences at a per-individual level. Manual myocardial contouring was performed, and 1652 radiomic features per sequence were extracted using baseline and variations in imaging parameters. Radiomic feature stability to change in imaging parameters was assessed using Cohen d sensitivity. The stability of radiomic features was assessed both without and after ComBat harmonization of radiomic features. Three ComBat methods were studied: parametric, nonparametric, and Gaussian mixture model (GMM). For all sequences combined, 51.4% of features were robust to changes in imaging parameters when no ComBat method was applied. ComBat harmonization substantially increased the number of stable features to 95.1% (95% CI: 94.9, 95.3) when parametric ComBat was used and 90.9% (95% CI: 90.6, 91.2) when nonparametric ComBat was used. GMM combat resulted in only 52.6% stable features. ComBat harmonization improved the stability of radiomic features to changes in imaging parameters across all cardiac MRI sequences.Keywords: Cardiac MRI, Radiomics, ComBat, Harmonization Supplemental material is available for this article. © RSNA, 2023.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.