Abstract
Suzuki cross‐couplings either between chlorinated N‐methyliminodiacetic acid (MIDA)‐protected aryl boronates and 1,3,5‐tribromobenzene or between chlorinated aryl bromides and phenyltrisboronic species to star‐shaped 1,3,5‐triphenylbenzenes with different substitution patterns and chloro substituents at the outer phenyl rings were studied. The chlorinated precursors required for the respective reaction were synthesized and characterized. Depending on the used coupling reaction target triphenylbenzenes were isolated in yields between 42 % and 88 %. Their mesomorphic properties were influenced by the substitution pattern and number of peripheral chlorine atoms. Triphenylbenzene with 3,5‐alkoxy substitution and H in para‐position self‐assembled into either columnar hexagonal (Colh) mesophases or a soft crystal. While threefold chloro substitution in meta‐position of the outer phenyl rings led to stable room temperature Colho phases, triphenylbenzenes with threefold para‐chloro or 3,5‐dichloro substitution were non‐mesomorphic. Based on X‐ray diffraction data a helical packing model for the observed phases similar to that of related alkoxy‐substituted triphenylbenzenes was proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.