Abstract
Many practical combinatorial optimization problems can be described by integer linear programs having an exponential number of variables, and they are efficiently solved by column generation algorithms. For these problems, column generation is used to compute good dual bounds that can be incorporated in branch-and-price algorithms. Recent research has concentrated on describing lower and upper bounds of bi-objective and general multi-objective problems with sets of points (bound sets). An important issue to address when computing a bound set by column generation is how to efficiently search for columns corresponding to each point of the bound set. In this work, we propose a generalized column generation scheme to compute bound sets for bi-objective combinatorial optimization problems. We present specific implementations of the generalized scheme for the case where one objective is a min–max function by using a variant of the $$\varepsilon $$ -constraint method to efficiently model these problems. The proposed strategies are applied to a bi-objective extension of the multi-vehicle covering tour problem, and their relative performances based on different criteria are compared. The results show that good bound sets can be obtained in reasonable times if columns are efficiently managed. The variant of the $$\varepsilon $$ -constraint presented is also better than a standard $$\varepsilon $$ -constraint method in terms of the quality of the bound sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.