Abstract

We sought to determine the extent to which red-green, colour-opponent mechanisms in the human visual system play a role in the perception of drifting luminance-modulated targets. Contrast sensitivity for the directional discrimination of drifting luminance-modulated (yellow-black) test sinusoids was measured following adaptation to isoluminant red-green sinusoids drifting in either the same or opposite direction. When the test and adapt stimuli drifted in the same direction, large sensitivity losses were evident at all test temporal frequencies employed (1-16 Hz). The magnitude of the loss was independent of temporal frequency. When adapt and test stimuli drifted in opposing directions, large sensitivity losses were evident at lower temporal frequencies (1-4 Hz) and declined with increasing temporal frequency. Control studies showed that this temporal-frequency-dependent effect could not reflect the activity of achromatic units. Our results provide evidence that chromatic mechanisms contribute to the perception of luminance-modulated motion targets drifting at speeds of up to at least 32 degrees s(-1). We argue that such mechanisms most probably lie within a parvocellular-dominated cortical visual pathway, sensitive to both chromatic and luminance modulation, but only weakly selective for the direction of stimulus motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.