Abstract

We have explored the colossal magnetoresistance (CMR) effect in the antiferromagnetic La0.5Ca0.5MnO3 compound. In the absence of a magnetic field (H), the solid is a canted antiferromagnetic (AFM) insulator. An applied H in the Tesla scale induces a first order AFM to FM phase transition, and correspondingly, an insulator to metal transition. The observed CMR is attributed to the H-induced charge localization-delocalization behavior associated with the AFM–FM transition. At low temperatures (T<100 K), the solid remains in the AFM phase, where we have observed a phenomenal one millionfold change in resistivity between 0 and 8 Tesla. The origin of CMR in low T-region is a thermal activation energy gap which is strongly dependent on H.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.