Abstract

Herein, the nanocomposite films of Nylon-6 with reinforced nano-TiO2 were explored for their charge storage capacity. The high dielectric constant (e) of TiO2, along with its compatibility with Nylon-6, formed the basis for the present study. TiO2 nanoparticles were synthesized initially using hydrothermal technique. The microscopic uniformity and anatase-phase purity of the TiO2 nanoparticles were confirmed with the help of morphological and structural investigations. The effect of weight fraction of TiO2 in Nylon-6 was investigated to understand the robustness of the fabricated nanocomposites. The composite films with 5, 10 and 20 wt% of TiO2 in Nylon-6 matrix were prepared, and their dielectric behavior was explored by fabricating capacitors with parallel plate architecture. The composite film with 20 wt% TiO2 showed the highest dielectric parameters. The nanocomposite films have the exceptional dielectric quality with e ~ 124 and low dielectric loss of 0.51 at 1 kHz. The colossal dielectric nature along with minimum sophistication in the film fabrication process makes the present nanocomposite to be a potential candidate for the various electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.