Abstract

AbstractA simple and rapid colorimetric approach for the determination of adenosine has been developed via target inducing aptamer structure switching, thus leading to Au colloidal solution aggregation. In the absence of the analytes, the aptamer/gold nanoparticle (Au NP) solution remained well dispersed under a given high ionic strength condition in that the random‐coil aptamer was readily wrapped on the surface of the Au NPs, which resulted in the enhancement of the repulsive force between the nanoparticles due to the high negative charge density of DNA molecules. While in the presence of adenosine, target‐aptamer complexes were formed and the conformation of the aptamer was changed to a folded structure which disfavored its adsorption on the Au NP surface, thus leading to the reduction of the negative charge density on each Au NP and then the reduced degree of electrostatic repulsion between Au nanoparticles. As a result, the aggregation of the Au colloidal solution occurred. The changes of the absorption spectrum could be easily monitored by a UV‐Vis spectrophotometer. A linear correlation exists between the ratio of the absorbance of the system at 522 to 700 nm (A522 nm/A700 nm) and the concentration of adenosine between 100 nmol·L−1 and 10 µmol·L−1, with a detection limit of 51.5 nmol·L−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.