Abstract

We investigated the molecular mechanism of a rather large red shift of 31 nm in a human red pigment compared with a human green pigment. In this analysis, we paid special attention to the phenomenon of nonadditivity of spectral shifts due to substitution of the key amino acids (OH-bearing amino acids) and the phenomenon of cooperativity by which the spectral shifts due to substitution of the key amino acids in the protein environment of red pigment are about 1.5 times larger than that in the protein environment of green pigment. The analysis was made by using a model of three active sites on which the key amino acids are located and four effective sites by which the effect of the key amino acids is modified. As a result, we found that the interaction between the active sites that occurs through the repolarization of the chromophore induced by the key amino acid is essential for the nonadditivity phenomenon. We also found that the interaction between the active site and the effective site plays a major role in the cooperativity phenomenon. More directly, we say that the highly polarizable property of the chromophore is the origin of the rather large red shift in red pigment. Based on these analyses, we conclude that the interaction between the polarizable chromophore and the protein moiety has the capability of producing a significant spectral shift, at least 1000 cm-1, even by substitution of moderate polar residues of the OH-bearing amino acids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.