Abstract

A biomolecular photoreceptor consisting of bacteriorhodopsin (bR)-based complex Langmuir–Blodgett (LB) films was developed for color image detection. By mimicking the functions of the pigments in retina of human visual system, biomolecules with photoelectric conversion function were chosen and used as constituents for an artificial photoreceptor. bR and flavin were deposited onto the patterned (9-pixelized) ITO glass by LB technique. A 9-pixel biomolecular photoreceptor was fabricated with a sandwich-type structure of ITO/LB films/electrolyte gel/Pt. Since each functional molecule shows its own response characteristic according to the light illumination in the visible region, the simplified knowledge-based algorithm for interpretation of the incident light wavelength (color) was proposed based on the basic rule describing the relationship between the photoelectric response characteristics and the incident light wavelength. When simple color images were projected onto the photoreceptor, the primary colors in visible light region, red, green, and blue were clearly recognized, and the projected color images were fairly well reproduced onto the color monitor by the proposed photoreceptor with the knowledge-based algorithm. It is concluded that the proposed device has a capability of recognizing the color images and can be used as a model system to simulate the information processing function of the human visual system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.