Abstract

Symptoms associated with fungal damage, viral diseases, and immature soybean (Glycine max) seeds were characterized using image processing techniques. A Red, Green, Blue (RGB) color feature-based multivariate decision model discriminated between asymptomatic and symptomatic seeds for inspection and grading. The color analysis showed distinct color differences between the asymptomatic and symptomatic seeds. A model comprising six color features including averages, minimums, and variances for RGB pixel values was developed for describing the seed symptoms. The color analysis showed that color alone did not adequately describe some of the differences among symptoms. Overall classification accuracy of 88% was achieved using a linear discriminant function with unequal priors for asymptomatic and symptomatic seeds with highest probability of occurrence. Individual classification accuracies were asymptomatic 97%, Alternaria spp. 30%, Cercospora spp. 83%, Fusarium spp. 62%, green immature seeds 91%, Phomopsis spp. 45%, soybean mosaic potyvirus (black) 81%, and soybean mosaic potyvirus (brown) 87%. The classifier performance was independent of the year the seed was sampled. The study was successful in developing a color classifier and a knowledge domain based on color for future development of intelligent automated grain grading systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.