Abstract

BackgroundMating is a physiological process of crucial importance underlying the size and maintenance of mosquito populations. In sterile and incompatible insect technologies (SIT and IIT), mating is essential for mass production, persistence, and success of released individuals, and is a central parameter for judging the effectiveness of SIT/IIT programs. Some mosquitoes have an enormous reproductive potential for both themselves and pathogens and mating may contribute to persistence of infection in nature. As Aedes albopictus can transmit flaviviruses both sexually and horizontally, and as infected insects are usually derived from laboratory colonies, we investigated the implications of mating between a long-term laboratory colony of Ae. albopictus and wild populations.MethodsThrough a series of mating experiments, we examined the reproductive outcomes of sexual cross-affinity between laboratory-raised and wild adults of Ae. albopictus.ResultsThe results indicated appreciable mating compatibility between laboratory-reared and wild adults, and equivalent levels of egg production among reciprocal crosses. We also observed comparable larval eclosion in lab females mated with wild males, and increased adult longevity in female offspring from wild females|×|laboratory males crosses.ConclusionsTaken together, these data suggest that Ae. albopictus can preserve its reproductive fitness over a long period of time in the laboratory environment and has valuable attributes for SIT application. These observations together with the ability to successfully inseminate heterospecific females indicate the potential of Ae. albopictus to act as an ecological barrier if non-sterilized males are massively released in areas occupied by Aedes aegypti. The observed substantial reproductive fitness combined with the capability to reproduce both, itself and viruses illustrates the potential of Ae. albopictus to pose a serious threat if infected and released accidentally.

Highlights

  • Mating is a physiological process of crucial importance underlying the size and maintenance of mosquito populations

  • For the different mating pairs, there was a steady decrease in egg production when progressing from laboratory pairs (80.46 ± 6.82 eggs; range 17–128) to laboratory females (LF) mated with wild males (WM) (65.48 ± 5.44 eggs; range 12–138) to wild pairs (52.90 ± 7.10 eggs; range 9–129) to wild females (WF) mated with laboratory males (LM) (36.50 ± 5.84 eggs, range 0–139)

  • Mean (± SE) number of eggs produced was significantly greater than those obtained from the wild pairs (Tukey honestly significant difference (HSD), P = 0.027) and WFs mated with LMs (Tukey HSD, P < 0.001)

Read more

Summary

Introduction

Mating is a physiological process of crucial importance underlying the size and maintenance of mosquito populations. Aedes albopictus has spread worldwide [1,2] and its establishment in an area has often been associated with a decline, sometimes leading to local extinction, of the indigenous Aedes populations [1]. This mosquito transmits several arboviruses, including those responsible for yellow fever and various types of encephalitis. It is a competent laboratory vector of more than 20 arboviruses [3,4], including Chikungunya virus [5,6]. The World Health Organization has estimated that more than 2.5 billion people are at risk of dengue infection [11] and recently classified this disease as a pandemic threat [12]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.