Abstract

Development of synthetic systems carrying life-like features is a long-standing challenge in chemistry and material science. Poor understanding of mechanisms ruling the emergence of life-like features in an inanimate matter makes the challenge even more exciting. The growing field of systems chemistry takes the lead in defining life-like dynamic signatures in minimalistic (macro)molecular systems through the development of multicomponent synthetic models using tools from organic and supramolecular chemistry. Recent progress in nanoscience makes available a range of novel materials that can undoubtedly enrich systems chemistry. Therefore, with the aim of placing nano- and colloidal science within the context of systems chemistry, the recent experimental and theoretical developments dealing with the use of nanoparticles and their assemblies in the realisation of the concepts such as replication, reproduction and selection are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.