Abstract

Colloidal photonic crystals (CPCs), fabricated from the assembly of micro-/nano-particles, have attracted considerable interest due to their unique properties, such as structural color, slow-photon effect, and high specific surface area (SSA). Benefiting from these properties, significant progress has been made in the biological applications of CPCs. In this perspective, these properties and relative manipulation strategies are firstly discussed, building bridges between properties and biological applications of CPCs. Structural color endows CPCs with naked-eye sensing capability, which can be applied to physiological state assessment and diagnosis, as well as self-report of CPC-based diagnostic and therapeutic devices. The slow-photon effect contributes to enhanced fluorescence, surface-enhanced Raman scattering, and efficacy of photodynamic/photothermal therapy, when CPCs are combined with corresponding functional materials. High SSA provides CPCs with abundant binding sites and superior capabilities for loading, adsorption, delivery, etc. These properties can be utilized individually or synergistically to grant CPCs superior performance in biological applications. Next, the recent advancements of CPCs towards biological applications are summarized, including biosensors, wound dressings, cells-on-a-chip, and phototherapy. Finally, a perspective on the challenges and future development of CPCs for biological applications is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.