Abstract
Atomic layer deposition (ALD) is a method to grow thin metal oxide layers on a variety of materials for applications spanning from electronics to catalysis. Extending ALD to colloidally stable nanocrystals promises to combine the benefits of thin metal oxide coatings with the solution processability of the nanocrystals. However, challenges persist in applying this method, which relate to finding precursors that promote the growth of the metal oxide while preserving colloidal stability throughout the process. Herein, we introduce a colloidal ALD method to coat nanocrystals with amorphous metal oxide shells using metal and oxygen precursors that act as colloidal stabilizing ligands. Our scheme involves metal-amide precursors modified with solubilizing groups and oleic acid as the oxygen source. The growth of the oxide is self-limiting and proceeds in a layer-by-layer fashion. Our protocol is generalizable and intrinsically scalable. Potential applications in display, light detection, and catalysis are envisioned.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.