Abstract
An analytical description is presented for the head-on collision of two spherical rigid particles that are coated with a thin layer of one liquid and immersed in another. Lubrication theory is used to resolve the spatio-temporal evolution of the coating surfaces, in conjunction with the fluid flow in the gap region between the particles. The analysis is carried out up to the point where the gap region has almost completely been drained; intermolecular forces are neglected. The effects of particle inertia, the ratio of particle radii, surface tension, and the viscosity ratio of the coating and carrier fluids are studied; these are parameterised by St, β, Ca and m, respectively. The results of the present work elucidate the effect of the above-mentioned factors on the conditions under which particles rebound (assumed to occur if the distance between the particles becomes very short while the relative velocity does not vanish) or stick. In particular, summarizing flowmaps show that the likelihood of particles rebounding increases with increasing St and decreasing β, Ca and m. On the other hand, it is shown that the force on approaching particles depends on all of these parameters in a non-monotonic manner.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.