Abstract

In dense astrophysical environments, notably core-collapse supernovae and neutron star mergers, neutrino-neutrino forward scattering can spawn flavor conversion on very short scales. Scattering with the background medium can impact collective flavor conversion in various ways, either damping oscillations or possibly setting off novel collisional flavor instabilities (CFIs). A key feature in this process is the slowness of collisions compared to the much faster dynamics of neutrino-neutrino refraction. Assuming spatial homogeneity, we leverage this hierarchy of scales to simplify the description accounting only for the slow dynamics driven by collisions. We illustrate our new approach both in the case of CFIs and in the case of fast instabilities damped by collisions. In both cases, our strategy provides new equations, the , that simplify the description of flavor conversion and allow us to qualitatively understand the final state of the system after the instability, either collisional or fast, has saturated. Published by the American Physical Society 2024

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.