Abstract

AbstractThe specific history of collisionless drift waves is marked by focusing upon current‐driven, shear‐modified, and electron‐temperature‐gradient modes. Studies of current‐driven collisionless drift waves started in 1977 using the Innsbruck Q machine and was continued over 30 years until 2009 with topics such as plasma heating by drift waves in fusion‐oriented confinement and space/astrophysical plasmas. Superposition of perpendicular flow velocity shear on parallel shear intensively modifies the drift wave characteristics through the variation of its azimuthal structure, where the parallel‐shear driven instability is suppressed for strong perpendicular shears, while hybrid‐ion velocity shear cause unexpected stabilization of the parallel‐shear‐modified drift wave. An electron temperature gradient can be formed easily by control of thermionic electron superimposed on ECR plasma, and is found to excite low‐frequency fluctuation in the range of drift waves (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.