Abstract

Finite size effects in the equilibrium phase space density distribution function are taken into account for calculations of the relaxation of collective motion in finite nuclei. Memory effects in the collision integral and the diffusivity and the quantum oscillations of the equilibrium distribution function in momentum space are considered. It is shown that a smooth diffuse (Fermi-type) equilibrium distribution function leads to a spurious contribution to the relaxation time. The residual quantum oscillations of the equilibrium distribution function eliminates the spurious contribution. It ensures the disappearance of the gain and loss terms in the collision integral in the ground state of the system and strongly reduces the internal collisional width of the isoscalar giant quadrupole resonances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.