Abstract

The pairwise collisional growth of dust aggregates consisting of submicron-sized grains is the first step of planet formation, and understanding the collisional behavior of dust aggregates is therefore essential. It is known that the main energy dissipation mechanisms are the tangential frictions between particles in contact, namely, rolling, sliding, and twisting. However, there is great uncertainty for the strength of rolling friction, and the dependence of the collisional growth condition on the strength of rolling friction was poorly understood. Here we performed numerical simulations of collisions between two equal-mass porous aggregates with various collision velocities and impact parameters, and we also changed the strength of rolling friction systematically. We found that the threshold of the collision velocity for the fragmentation of dust aggregates is nearly independent of the strength of rolling friction. This is because the total amount of the energy dissipation by the tangential frictions is nearly constant even though the strength of rolling friction is varied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.