Abstract

Elucidating the structures and stabilities of proteins and their complexes is paramount to understanding their biological functions in cellular processes. Native mass spectrometry (MS) coupled with ion mobility spectrometry (IMS) is emerging as an important biophysical technique owing to its high sensitivity, rapid analysis time, and ability to interrogate sample complexity or heterogeneity and the ability to probe protein structure dynamics. Here, a commercial IMS-MS platform has been modified for static native ESI emitters and an extended mass-to-charge range (20 kDa m/z) and its performance capabilities and limits were explored for a range of protein and protein complexes. The results show new potential for this instrument platform for studies of large protein and protein complexes and provides a roadmap for extending the performance metrics for studies of even larger, more complex systems, namely, membrane protein complexes and their interactions with ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.