Abstract

<abstract><p>The collision detection and estimation of external forces for robot manipulators are essential to ensure compliance and safety in the interaction between the robot and the environment or humans. The focus of this paper was to design a hybrid approach for collision detection between robots and their environment, and further to estimate external forces acting on a robot manipulator without the need for additional sensors. The current collision detection methods using observers are still suffering from the problem of an unavoidable trade-off between the estimation sensitivity and the reduction of the peaking value at the initial time. To satisfy both robustness and avoid peaking phenomenon at the initial time, a composite observer was designed, consisting of both a momentum observer and an extended state observer. The first observer provides high-precision tracking, while the second one reduces the peak value at the start. Through their complementary roles, the composite observer achieves improved performance in terms of sensitivity and reducing the peaking value. Simulation results, conducted using a 2-degree-of-freedom (2-DOF) robot manipulator, attest to the efficacy of the proposed approach.</p></abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.