Abstract

Collective multipartite Einstein-Podolsky-Rosen (EPR) steering is a type of quantum correlation shared among $n$ parties, where the EPR paradox of one party can be realized only by performing local measurements on all the remaining $n\ensuremath{-}1$ parties. Here, we propose an efficient method to produce collective multipartite EPR steering via symmetrically and asymmetrically cascading parametric amplification processes, i.e., four-wave mixing (FWM) of rubidium atoms. The simplified collective-steering criterion is introduced using the Coffman-Kundu-Wootters monogamy relation. Moreover, by actively adjusting the parametric gains, the collective EPR steerability is optimized in our schemes. We find that the scale of collective steering can be extended by cascading more FWMs; in particular, introducing optical loss is useful for generating collective steering with more parties only in the asymmetry structure. Our results pave the way for the construction of quantum networks and provide a promising candidate for one-sided device-independent quantum cryptography among multiple users.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.