Abstract

A method is described for identifying collective motions in proteins from molecular dynamics trajectories or normal mode simulations. The method makes use of the covariances of atomic positional fluctuations. It is illustrated by an analysis of the bovine pancreatic trypsin inhibitor. Comparison of the covariance and cross-correlation matrices shows that the relative motions have many similar features in the different simulations. Many regions of the protein, especially regions of secondary structure, move in a correlated manner. Anharmonic effects, which are included in the molecular dynamics simulations but not in the normal analysis, are of some importance in determining the larger scale collective motions, but not the more local fluctuations. Comparisons of molecular dynamics simulations in the present and absence of solvent indicate that the environment is of significance for the long-range motions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.