Abstract

PurposeTo acquire high-resolution 3D multi-slab echo planar imaging data without motion artifacts, using collapsed fat navigators. MethodsA fat navigator module (collapsed FatNav) was added to a diffusion-weighted 3D multi-slab echo planar imaging (DW 3D-MS EPI) sequence, comprising three orthogonal echo planar imaging readouts to track rigid body head motion in the image domain and performing prospective motion correction. The stability, resolution and accuracy of the navigator were investigated on phantoms and healthy volunteers. ResultsThe experiments on phantoms and volunteers show that the navigator, depicting projections of the subcutaneous fat in of the head, is capable of correcting for head motion with insignificant bias compared to motion estimates derived from the water-signaling DWI images. Despite that this projection technique implies a non-sparse image appearance, collapsed FatNav data could be highly accelerated with parallel imaging, allowing three orthogonal 2D EPI readouts in about 6ms. ConclusionBy utilizing signal from the leading fat saturation RF pulse of the diffusion sequence, only the readout portion of the navigator needs to be added, resulting in a scan time penalty of only about 5%. Motion can be detected and corrected for with a 5–10Hz update frequency when combined with a sequence like the DW 3D-MS EPI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.