Abstract

In this work, a blend of collagen, physiologically clotted fibrin (PCF), and silver nanoparticles (AgNPs) is used to develop a nanobioscaffold (NBS), for their possible application in wound dressing materials. The prepared NBS were evaluated using physicochemical, mechanical, and antibacterial properties. The NBS cell viability was demonstrated in a biocompatibility study using the human keratinocyte cell line (HaCaT). The results demonstrated that the NBS had excellent tensile strength (22.15 ± 0.05 MPa), elongation at break (13.32 ± 0.09%), and water absorption (97.51 ± 0.08). The in-vitro study demonstrated its biocompatible nature. NBS exhibited significant antibacterial activity against the Gram-negative and Gram-positive bacteria. The NBS with required mechanical strength, antibacterial activity, and biocompatibility may be tested as a wound material in rats after getting the necessary approval.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.