Abstract

Repair of bone defects is a difficult clinical problem for reconstructive surgeons. Bone tissue engineering using an appropriate scaffold with cells is a new therapy for the repair of bone defects. The aim of this study was to evaluate the in vitro osteogenesis of canine adipose tissue-derived mesenchymal stem cells (Ad-MSCs) cultured in a combination of collagen I gel and a porous serum-derived albumin scaffold. A serum-derived albumin scaffold was prepared with canine serum by cross-linking and freeze-drying procedures. Ad-MSCs were seeded into serum-derived albumin scaffolds with or without collagen I gel, and were exposed to osteogenic differentiation conditions in vitro. After 28 days of in vitro culture, the distribution and osteogenic differentiation of Ad-MSCs cultured in the scaffold were evaluated by scanning electron microscopy, histology, immunohistochemistry, alkaline phosphatase (ALP) activity assay, and calcium colorimetric assay. Ad-MSCs showed more homogeneous distribution and osteogenic differentiation in the scaffold with collagen I gel than without collagen I gel. ALP activity and extracellular matrix mineralization in the construct with type I collagen were significantly higher than in the construct without type I collagen (p < 0.05). In conclusion, the combination of collagen I gel and the serum-derived albumin scaffold enhanced osteogenic differentiation and homogenous distribution of Ad-MSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.