Abstract

AbstractThe task offloading problem, which aims to balance the energy consumption and latency for Mobile Edge Computing (MEC), is still a challenging problem due to the dynamic changing system environment. To reduce energy while guaranteeing delay constraint for mobile applications, we propose an access control management architecture for 5G heterogeneous network by making full use of Base Station’s storage capability and reusing repetitive computational resource for tasks. For applications that rely on real-time information, we propose two algorithms to offload tasks with consideration of both energy efficiency and computation time constraint. For the first scenario, i.e. the rarely changing system environment, an optimal static algorithm is proposed based on dynamic programming technique to get the exact solution. For the second scenario, i.e. the frequently changing system environment, a two-stage online algorithm is proposed to adaptively obtain the current optimal solution in real time. Simulation results demonstrate that the exact algorithm in the first scenario runs 4 times faster than the enumeration method. In the second scenario, the proposed online algorithm can reduce the energy consumption and computation time violation rate by 16.3% and 25% in comparison with existing methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.