Abstract

As an important infrastructure supporting rural development, an integrated energy system plays an irreplaceable role in China's rural revitalization strategy. The deployment of rural energy projects is an effective way for rural areas to achieve double carbon goals and accelerate agricultural modernization. Based on the actual rural energy systems in northern China, this paper takes the rural energy system with photovoltaic greenhouses as the research object. Both the agrometeorological and energy meteorological models are established considering the meteorological sensitivity of agricultural production and photovoltaic generation. We propose a novel method for optimizing the collaboration between photovoltaic greenhouse load control and rural energy systems. The combined coordination model of agriculture and energy networks is established, and the combined model involves carbon, electrical energy, and thermal energy. Supplemental greenhouse lighting and greenhouse heating consume most of the energy and are finely modeled with focused attention on photosynthesis. Finally, a real-world 47-bus distribution network and three photovoltaic greenhouses in northern China are simulated as an analytical example. The simulation results showed that by using the proposed optimization method, a 3996 m <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> greenhouse with a 25% photovoltaic coverage ratio can save 15% on energy costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.