Abstract
Constructing training goals for unlabeled data is crucial for image classification in the semi-supervised setting. Consistency regularization typically encourages a model to produce consistent predictions with the given training goals, while unreliability adaptation aims to learn the transition probabilities from model predictions to training goals, instead of enforcing their consistency. In this paper, we present a model of Collaborative learning with Unreliability Adaptation (CoUA), in which multiple constituent networks collaboratively learn with each other by adapting their predictions. Toward this end, an additional adaptation module is incorporated into each network to learn a transition probability from its own prediction to that of the paired network. Therefore, the networks can exchange training experience, without being overly sensitive to the unreliability of predictions. To further enhance the collaborative learning, each network is encouraged to produce consistent predictions with the consensus results, while being resistant to the adversarial perturbations against others. Therefore, the networks are able to mutually reinforce each other. We perform extensive experiments on multiple image classification benchmarks to verify the superiority of the co-adaptation based collaborative learning mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.