Abstract

Abstract A switched Nonlinear Model Predictive Control (NMPC) strategy for time efficient energy control of railway vehicles, while fulfilling constraints on velocity, journey time and driving style in a collaborative fashion (collaborative eco-drive) is proposed. More specifically, the train dynamics are modeled as discrete, switched and nonlinear, while the optimization variable is the handle position which modulates the available traction/braking force and has to belong to a set of discrete values and/or operating modes, which the human driver is able to implement. Hence the aim is to choose the optimal handle position that minimizes the cost, is implementable by the driver and also fulfills the eco-driving objective, such that the driving style is constrained by predefined driving sequences. A supervisor detects the states of the trains and subsequently modifies the weights of the cost by negotiating between constraint satisfaction and control aggressiveness, in order to share the available regenerated braking energy among the connected trains in a substation network. The efficiency of the proposed switched NMPC strategy is demonstrated using realistic simulation case study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.