Abstract
Accurately assessing the medical image segmentation quality of the automatically generated predictions is essential for guaranteeing the reliability of the results of computer-assisted diagnosis (CAD). Many researchers have studied segmentation quality estimation without labeled ground truths. Recently, a novel idea is proposed, which transforms segmentation quality assessment (SQA) into the pixel-wise or voxel-wise error map segmentation task. However, the simple application of vanilla segmentation structures in medical domain fails to achieve satisfactory error segmentation results. In this paper, we propose collaborative boundary-aware context encoding networks called EP-Net for error segmentation task. Specifically, we propose a collaborative feature transformation branch for better feature fusion between images and masks, and precise localization of error regions. Further, we propose a context encoding module to utilize the global predictor from the error map to enhance the feature representation and regularize the networks. Extensive experiments on IBSR V2.0 dataset, ACDC dataset and M&Ms dataset demonstrate that EP-Net achieves better error segmentation results compared with the traditional segmentation patterns. Based on error prediction results, we obtain a proxy metric of segmentation quality, which has high Pearson correlation coefficient with the real segmentation accuracy on all datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.