Abstract
The behaviour of Hg II and Hg II -thiol complexes (RSH=L-cysteine, DL-penicillamine, propane-2-thiol, glutathione, thiosalicylic acid) following their reduction with alkaline sodium tetrahydroborate to give Hg 0 has been studied by using a continuous flow reaction system coupled with atomic fluorescence spectrometric (AFS) detection. The quantitative reduction of Hg II to Hg 0 takes place with a specific amount of sodium tetrahydroborate according to the stoichiometric reaction of mercury with alkaline NaBH 4 . The complete reduction of Hg II -thiol complexes to Hg 0 requires a molar excess of NaBH 4 of up to six orders of magnitude, depending on the type of complex. Under an appropriate excess of reductant, Hg II and its thiol complexes are not distinguishable giving the same AF molar response. The method allows the discrimination of Hg II from Hg II -thiol complexes without any preliminary separation. Applications to the indirect titration of thiols and to the determination of the number of accessible }}n1SH groups in pure ovalbumin samples are reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.