Abstract

Colonization of the human nasopharynx exposes Moraxella catarrhalis, a common cause of otitis media in children and exacerbations of chronic obstructive pulmonary disease in adults, to sudden downshifts in temperature, occurring when the host breathes cold air. We investigated whether in vitro cold shock influences the expressions of the outer membrane adhesins UspA1 and hemagglutinin, which are considered virulence factors, and of an M. catarrhalis homolog of recA, a housekeeping gene, which in Escherichia coli is induced by cold shock. Quantitative real-time reverse transcriptase PCR was used for measuring mRNA copy number. A screening experiment revealed that a cold shock at 26 degrees C maximally induced the copy number of uspA1. In comparison with 37 degrees C conditions, a 1-hour cold shock at 26 degrees C increased copy numbers of uspA1 and recA by 2.5-fold (11.2 +/- 1.8 versus 4.5 +/- 0.8 copies/CFU) and 2.7-fold (0.30 +/- 0.10 versus 0.11 +/- 0.06), respectively, but did not induce transcription of hag. Exposure to 26 degrees C increased surface expression of UspA1, as assessed by fluorescence-activated cell sorter analysis, and resulted in a significant increase in adherence of strain O35E to Chang human conjunctival cells (97.1% +/- 2.0% versus 48.3% +/- 9.2% at 37 degrees C; P = 0.01). Cold shock induction of uspA1 and recA was detected in strains belonging to either phylogenetic subpopulation of M. catarrhalis (16S rRNA types 1 and 2/3) and was most pronounced in type 2/3 strains (4- to 25-fold for uspA1), which do not express detectable amounts of UspA1 protein at 37 degrees C. These data indicate that cold shock at a physiologically relevant temperature of 26 degrees C induces the expression of at least one virulence factor (UspA1). To our knowledge, no similar data are available for other nasopharyngeal pathogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.