Abstract
A temperature shift-down of Bacillus subtilis from 40 to 20°C induces an 80 min growth lag. Benzyl alcohol reduced this period to 51 min, whereas ethanol prolonged it up to 102 min. The effect of the two alcohols on the membrane state was investigated by measuring the steady-state fluorescence anisotropy and analysing the lifetime distribution of diphenylhexatriene (DPH) and its polar derivative, TMA-DPH. As followed from the fluorescence anisotropy, the two alcohols exerted similar (fluidising) effects on the cytoplasmic membranes of B. subtilis. However, benzyl alcohol significantly shortened the main DPH lifetime component and widened its distribution, while ethanol had no effect. The benzyl alcohol activity was interpreted in terms of an increased membrane hydration due to disordering of the membrane structure. Such an effect imitates the cold shock induced synthesis of unsaturated fatty acids in B. subtilis. The fatty acid analysis revealed that ethanol hindered this adaptive synthesis of fatty acids. At the same time, its effect on the membrane state (membrane order) was very low and could not substitute the physiological response as was the case with benzyl alcohol. It can thus be concluded that the adaptation of the membrane physical state contributes significantly to the cold shock response of B. subtilis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Biomembranes
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.