Abstract

IntroductionPlatelets activation/aggregation with subsequent thrombus formation is the main event in the pathophysiology of acute coronary syndrome. Once activated, platelets show an extensive cytoskeleton rearrangement that leads to recruitment of additional platelets to finally cause haemostatic plug formation. Thus, the cytoskeleton plays a pivotal role in this phenomenon. Colchicine (COLC) is an anti-inflammatory drug proven to reduce major cardiovascular events in patients with coronary artery disease. The molecular mechanisms by which COLC exerts these protective effects remain partially still unknown. Since COLC causes disruption of tubulin, a component of cell cytoskeleton, we investigated whether this drug might interfere with platelet aggregation by acting on cytoskeleton rearrangement. Methods and resultsPlatelets isolated from healthy volunteers were activated with Adenosine Diphosphate (ADP, 20 μM) Collagen (COLL, 60 μg/ml) and Thrombin Activating Receptor Peptide (TRAP 25 μM) with/without COLC 10 μM pretreatment. After stimulus, aggregation was measured by light aggregometry overtime. Microtubules structure was assessed by immunohistochemistry and key proteins involved in regulation of actin-filament assembly and contractility such as Myosin Phosphatase Targeting subunit (MYPT), LIM domain kinase 1(LIMK1) and cofilin were evaluated by Western Blot analysis. Colchicine pretreatment significantly blunted ADP/COLL/TRAP-induced platelet aggregation (up to 40%). COLC effects appeared mediated by microtubules depolymerization and cytoskeleton disarrangement associated to inactivation of MYPT and LIMK1 that finally interfered with cofilin activity. ConclusionsOur data indicate that colchicine exerts anti-platelet effects in vitro via inhibition of key proteins involved in cytoskeleton rearrangement, suggesting that its beneficial cardiovascular properties may be due, at least in part, to an inhibitory effect of platelet activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.