Abstract
Following Leites, we define a cohomology for Lie superalgebras. A number of combinatorial identities are presented as well as two theorems which prove to be very useful in calculations. We then introduce the notion of deformations of Lie superalgebras and look at the deformations of the super-Poincare algebra and of osp(4/2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.