Abstract

In this article a higher order support theory, called the cohomological jump loci, is introduced and studied for dg modules over a Koszul extension of a local dg algebra. The generality of this setting applies to dg modules over local complete intersection rings, exterior algebras and certain group algebras in prime characteristic. This family of varieties generalizes the well-studied support varieties in each of these contexts. We show that cohomological jump loci satisfy several interesting properties, including being closed under (Grothendieck) duality. The main application of this support theory is that over a local ring the homological invariants of Betti degree and complexity are preserved under duality for finitely generated modules having finite complete intersection dimension.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.