Abstract
We present the coherent states of the harmonic oscillator in the framework of the generalized (gravitational) uncertainty principle (GUP). This form of GUP is consistent with various theories of quantum gravity such as string theory, loop quantum gravity and black-hole physics and implies a minimal measurable length. Using a recently proposed formally self-adjoint representation, we find the GUP-corrected Hamiltonian as a generator of the generalized Heisenberg algebra. Then following Klauder's approach, we construct exact coherent states and obtain the corresponding normalization coefficients, weight functions and probability distributions. We find the entropy of the system and show that it decreases in the presence of the minimal length. These results could shed light on possible detectable Planck-scale effects within recent experimental tests.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.