Abstract

We reanalyze the non-linear population dynamics of a Bose–Einstein condensate (BEC) in a double well trap considering a semiclassical approach based on a time dependent variational principle applied to coherent states associated to SU(2) group. Employing a two-mode local approximation and hard sphere type interaction, we show in the Schwinger’s pseudo-spin language the occurrence of a fixed point bifurcation that originates a separatrix of motion on a sphere. This separatrix corresponds to the borderline between two dynamical regimes of Josephson oscillations and mesoscopic self-trapping. We also consider the effects of interaction between particles in different wells, known as cross-collisions. Such terms are usually neglected for traps sufficiently far apart, but recently it has been shown that they contribute to the effective tunneling constant with a factor growing linearly with the particle number. This effect changes considerably the effective tunneling of the system for sufficiently large number of trapped atoms, in perfect accord with experimental data. Finally, we identify analytically the transition parameter associated to the bifurcation in the generalized phase space of the model with cross-collision terms, and show how the dynamical regime depends on the initial conditions of the system and the collisional parameters values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.